The Vertical Transect (Mixed Use Walkable Building and Blocks)
Leon Krier isn’t Convinced it’s a Good Idea… yet.
Human Scaled Relationships at a Vertical and Horizontal Distances

(social field of vision)

(Jan Gehl, Cities for People, 2010)
The Verticalization of Downtown San Diego

Downtown San Diego, 1926

Downtown San Diego, 2016

The Verticalization of Downtown San Diego
Original Tower Design Elements
Types of Vertical Buildings Today
Various Vertical City Typologies
Transforming Towers from Self-Referential, Singular Buildings to Context-Sensitive Design

Privacy is at a premium in this zone. Beyond human connectivity and scale, regional design considerations begin with incorporating endless vistas, such as oceans, mountains (Mexico if in San Diego), and beyond the city into these penthouse units. Balconies should be set within the building form to mitigate natural fear and exposure to elements found at extreme heights. Public spaces include observation decks. Other uses include restaurants, bars, offices, and housing.

REGIONAL SCALE

Inhabitants share a visual relationship with the city, from the edge of downtown to its core. This section stretches with the level of urban intensity surrounding it. Homes, work spaces, hotels, shared housing, plus viewing terraces, pools, community rooms. Balconies alternate.

CITY SCALE

Human connectivity reaches across the street, usually 60–80 feet wide, with facial and voice recognition. Balconies front onto streets and are more public. More uses are allowed on this level than in the upper zones. Public spaces include decks and community rooms.

BLOCK SCALE

Human connectivity is at a premium on and across the street. Where the city meets the building, people engage face-to-face at street level. This zone allows for the most intense mix of uses and public spaces. Balconies front onto the street.

STREET SCALE

Vertical Context Layers per Building

- Vertical Layer 4
 - Regional Context
- Vertical Layer 3
 - City Context
- Vertical Layer 2
 - Block Context
- Vertical Layer 1
 - Street Context
FIGURE-SKY STUDY PER ARCHITECTURAL PATTERNS (More to Less Urban)

Below is an illustrative study of the figure-sky ratios of the city architectural patterns to understand how to 'tune' the open public sky-space in relationship with built private figure spaces from too little to too much, and finally the optimum amount. This graphic illustrates the Figure-Sky differences between Chicago, Vancouver, and San Diego's vertical intensity understanding the less intense skylines are able to transition to more intense.

Scenario 1
- San Diego, California, T6 Zone
- E Street/10th - 11th St.
- 200 Units per Block
- 60% Building / 40% Public Space
- Buildings from single-story to 50-story
- City got Rich in 1957
 - Predominately Mid-Century Modern
- Few A Streets / Mostly B Streets
- No Alleys / Few Paseos

Scenario 2
- Vancouver, BC, T6 Zone
- Robson/Richards to Hamilton St
- 350 Units per Block
- 65% Building / 35% Public Space
- Buildings from 4 to 50-stories
- City got Rich in 1991
 - Predominately Point Towers+Wrap
- Few A Streets / Mostly B Streets
- Many Alleys / Many Paseos

Scenario 3
- Chicago, Illinois, T6 Zone
- N. Michigan/Ohio to Illinois
- 550 Units per Block
- 70% Building / 30% Public Space
- Buildings from 6 to 100-stories
- City got Rich in 1890
 - Predominately Traditional Towers
- Many A Streets / Many B Streets
- Few Alleys / Many Paseos

Urbanizing Over Time
For Planning Authority Use

CODING VERTICAL + HORIZONTAL TRANSECT PER LOT LAYER/BLOCK FACE

3D Urbanism / Vertical Layers:
The experience of the pedestrian is determined by their access to buildings alongside. Pedestrians are mostly likely planned by, from more access to less access, streetscapes, followed by pannels, fenestrated walls, and deep landscaped yards. General floor frontages must respond to pedestrians in order there had to access, are garage doors, blank walls, open parking lots, unfurnished parking structures, under-building parking, and open service areas. These should be regulated to service lanes and B Streets. The experience of the upper floor frontages is determined by their access to places within the building. Inhabitants are most likely to be planned by primary, moves down to the street, space within wall. Level of architectural review/control, from more to less, fronting onto public spaces, fronting onto A Street, fronting onto B Streets.

V-Layer 1 (Elevated Streets):
- Length of Ground Floor Bays: at 16 feet on average / 32 feet maximum
- Height: Ground to 16 feet on average (+4 feet above grade) / 22 feet maximum
- Architectural Elements:
 - Building Types (Ground):
 - Courtyard
 - Flex or Townhouse
 - Studio Flat
 - Storage or Commercial Shell (warehouse)
 - Frontage (Access) Types:
 - Garage (Commercial/Office)
 - Arcade
 - Second and Signing:
 - Base
 - Piers
 - Signage
 - Street (Streetfront Cornice Line)
 - Commercial Entry (at grade - Commercial)
 - Planter
 - Entry Bays
 - Forecourt (along 4 feet above grade)
 - Canopies
 - Off Loading
 - Stoop and Light Court (5 feet above grade)
 - Terrace and Doorway (at grade)
 - Transition Line:

V-Layer 2 (The project floor Design types influence the configuration/orientation/function of the upper levels):
- Length of Upper Floor Bays: at 16 feet on average / 32 feet maximum
- Height: Second Floor (floor top of level 1 transition level 23 feet to 45 feet (Floors 2 - 5)
- Architectural Elements:
 - Building Types:
 - Townhouse (Terrace)
 - Flathouse
 - Studio Flat
 - Office
 - Warehouse
 - Access Types:
 - Corridor/Alleys
 - Stairway
 - Balcony
 - Rear Line
 - Core Line
 - Transition Line

V-Layer 3 (Horizontal connections are more important than vertical connections):
- Length of Upper Floor Bays: at 16 feet on average / 32 feet maximum
- Height: 46 feet to 68 feet (end bay)
- Architectural Elements:
 - Corridor Line
 - Passageway Line
 - Roof Line
Vertical Mobility, Infrastructure and Utilities.
Evolution of the Utopian Intent...
Building and Block
Vertical Contexts
Barcelona Block / Vertical Transect Applied to San Diego
Barcelona Block / Vertical Transect Applied to San Diego
ORIENTATION/CONFIGURATION/ FUNCTIONS

REGION: +20 FLOORS V 3 LESS USES

CITY: 11 - 20 FLOORS V 4

BLOCK: 6 - 10 FLOORS V 5

STREET: 1 - 5 FLOORS V 40 MOST USES

SK1 Vertical Transect - San Diego

Howard Blackson
Apr 24, 2020
Vertical Context Idea in Design Today (downtown San Diego)